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CONVERGENCE OF THE SHIFTED QR ALGORITHM 
FOR UNITARY HESSENBERG MATRICES 

TAI-LIN WANG AND WILLIAM B. GRAGG 

Dedicated to the memory of James H. Wilkinson 

ABSTRACT. This paper shows that for unitary Hessenberg matrices the QR 
algorithm, with (an exceptional initial-value modification of) the Wilkinson 
shift, gives global convergence; moreover, the asymptotic rate of convergence 
is at least cubic, higher than that which can be shown to be quadratic only 
for Hermitian tridiagonal matrices, under no further assumption. A general 
mixed shift strategy with global convergence and cubic rates is also presented. 

1. INTRODUCTION 

The QR algorithm has been known as a standard method for computing the 
eigenvalues of a dense matrix [5, 17, 1, 13, 6]. One remarkable feature in the devel- 
opment of QR is Wilkinson's discovery that the algorithm, when incorporated with 
his efficient shift strategy, gives fast convergence for all real symmetric tridiagonal 
matrices [18, 8]. In this paper we extend Wilkinson's famous results to the unitary 
case. We show that for unitary Hessenberg matrices the QR algorithm, with an ex- 
ceptional initial-value modification of the Wilkinson shift, gives global convergence 
in exact arithmetic. The proof is based on the Schur parameterization of unitary 
Hessenberg matrices [6] and a residual estimation for the shifted QR decomposition 
of these matrices. Furthermore, we show that the asymptotic rate of convergence 
with the Wilkinson shift is at least cubic in the unitary case. A general mixed shift 
strategy with global convergence and cubic rates is also included for reference. A 
special case of this general strategy (with parameter 0 = V2) was shown to have 
global convergence by Eberlein and Huang [4], in which the rate of convergence was 
claimed to be only quadratic. The analysis we consider here is purely theoretical. 
Numerical testing and experiments are prepared in a later paper. 

We adhere to the following notational conventions: upper case letters for matri- 
ces, lower case Latin letters for column vectors (except for i, j, k, and n, which are 
used as indices), and lower case Greek letters for scalars. The conjugate transpose 
of a vector a and of a matrix A is denoted by a* and A*, respectively, while the 
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conjugate of a complex number a is denoted by a. We use the Euclidean norm 

Ilall := 1al12 for vectors and the spectral norm IIAll := IIA12 for matrices. Through- 
out, A E Cnxn will represent an upper Hessenberg matrix of order n with entries 

ajk := e*Aek, 1 < j < k < n, in the upper triangular section and positive elements 
A 

:=" e7+lAek, 1 < k < n, on the subdiagonal, where ek denotes the kth column 
vector of an identity matrix with appropriate dimension. The leading principal 
submatrices of A will be expressed by Aj := EJAEj e CJ x, 1 < j < n, where 

Ej := [el,e2,..., ej] E Cnxj. Same structure and similar symbols apply to A and 
A(k), which will be defined in later sections. Iteration indices are usually indicated 
by superscript k in parentheses. In case A (or A or A(k)) is unitary we use letter U 

(or U or U(k)) to represent the matrix. We let A(A) be the set of the eigenvalues 
of A. To avoid triviality we assume that n, the order of A, is at least 3. 

2. SCHUR PARAMETERIZATION 

It is straightforward to see that every unitary (upper) Hessenberg matrix U E 
Cn x n with positive subdiagonal elements {/k }nij can be uniquely factorized into 
a product of n elementary unitary matrices [4, 6]: 

(2.1) U = 
U(a•, t2,... ,On) 

=: 
Gl(al)G2(t2)... Gno(an), 

where 

Gk(ak) := diag Ik-1, k k In-k-= 2 , 1 < n; 

Gn(n) 
: 

diag(In-1, 
-an 

,lanl -1. 

Here, Ij denotes the j x j identity matrix, and aC, a 2,... , an are called the Schur 
parameters of U [6]. These parameters can be determined from the top row and 
the subdiagonal of U: 

a1 = -eJUel, 

ak = 
-eUek/l132... k-1, 2 < k < n. 

To see this, we can multiply out the product Gl(al)G2(a2) ... G,(an) and obtain 

(2.2) 
-doai 

--o01a2 

-ao102 .. k-lak 
. -ao. 

1 0/12 
" 

n-1an 

O1 -a102 ... -d1,2 ''' 13k-1k ... - 

1?2 
?..On-la n 

02 
U= 

--k-la 
k 

. '. -dk-1/k " 
" 

" 
n-lan 

--On-lOn 

where a0 := 1. We refer to the representation (2.1) as the Schur parametric form 
of U. 
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3. THE SHIFTED QR ALGORITHM 

Given an upper Hessenberg matrix A E Cnxn and a shift parameter A E C, we 
form the QR factorization of 

(3.1) A - AI =: QR, 

with Q unitary and R upper triangular with nonnegative diagonal elements. Here 
Q is obtained by performing the Gram-Schmidt orthonormalizing process on the 
columns of A - AI from left to right, and hence is also upper Hessenberg. This 
factorization is unique if A ' A(A), and this is the case we usually assume hereafter. 
From Q we define A, the QR transform of A, by setting 

(3.2) A := Q*AQ = RQ + AI. 

The shifted QR algorithm iterates the QR transformation A --+ A, with an appro- 
priate shift A chosen at each step: 

A(1) := A 

for k = 1,2,3,... 
A(k) - A(k)I -: Q(k)fR(k); 

A(k+l) := R(k)Q(k) + A(k)I. 

It is well known that the Hessenberg structure of A(k) and Q(k) is preserved and 
that all the A(k) are unitarily similar to each other. The efficiency of this algorithm 
depends critically on the choice of the shift sequence A(k). In particular, if A(k) could 
be chosen close to an isolated eigenvalue of A, then 3(k)1 (the last subdiagonal 
element of A(k)) would eventually decrease rapidly. As soon as 3,1 becomes 

negligible to working precision, a(n) (the last diagonal element of A(k)) may be 
taken as a computed eigenvalue; we can then delete the last row and column, and 
proceed with a matrix of lower order [1, 17, 18, 13]. In fact if any of the subdiagonal 
elements of A(k) vanishes, then the eigenproblem splits into that for two or more 
smaller Hessenberg matrices. An upper Hessenberg matrix is said to be unreduced 
if its subdiagonal elements are all nonzero [11]. For the convenience of theoretical 
analysis, there is no loss of generality in assuming that all the 1j of A are positive 
and hence by the following lemma that, if A(k) A(A), all the 4Ojk) of A(k) are 
positive, 1 < j < n. 

Lemma 1 (Basic relations in QR). Let A be the QR transform of A with shift A. 
Then, for 1 < k < n, 

(a) 
k = akPk, !k = kPk+1, 

where fk, /k, and ak are, respectively, the subdiagonal elements of A, A, and 

Q, and Pk are the nonnegative diagonal elements of R; 
(b) 

pj > 0, 3k > O and A 0 A(A) == pj > , ak > , k > , 1 j 
<_n; hence 

A e A(A) - p, = O n =s31 = 0 - n ? = A; 
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(c) 
Ok k+.l 'n-1 3k+13k+2 '...' 3n-1Pn 

in particular, 

(i) fn-1 ? Pn, 

(ii) 3n-21n-1 f3n-lPn, 
(iii) -2 2- 2 3n - 21•n -1 ?- F'n1n 

Proof. (a) This is straightforward by equating the corresponding subdiagonal ele- 
ments on each side of the matrix equations (3.1) and (3.2), respectively. 

(b) The implications are direct consequences of the relations stated in (a) and 
the fact that A A(A) = P1P2'... Pn > 0, where {pj}jnl are chosen nonnegative 
in the factorization A - AI = QR, and that 

. ..n 
- A = e(A - AI)e, = eRQe, = pe,,Qe. 

(c) From (a) we have 

!3k3k+1 ', 3n-1 = OkPk+1Ok+1Pk+2 ''' Un-1Pn 

= 0k3k+lIk+2" " n-1Pn 

< 1k+11k+2"'" 3n-lPn, 
since 0 < ak ? 1. Setting k = n - 1 and k = n - 2 we get (i) and (ii), respectively. 
Multiplying (ii) with (i) side by side we obtain (iii). O 

3.1. Shift strategies. To achieve rapid convergence (for the definition of con- 
vergence see Section 5) it is essential to incorporate an efficient strategy into the 

algorithm. We consider, in each step of the QR transformation from A to A, the 
following choices of the shift parameter A [18, 4, 13, 10]: 

1) The Rayleigh shift (R-shift). 
A := ann, the last diagonal element of A. 

2) The Wilkinson shift (W-shift). 

A is taken as an eigenvalue of [ n-,n-1 
an-l,n 

, the trailing 2 x 2 

submatrix of A, which is closer to ann; that is, we choose A to satisfy 
(i) 6(A) := (A - 

an-l,-l)(A 
- ann) - 

O=n-0,nn-1 " 
O 

(ii)[ - oJA-nnK 
k 

VOln-ln3n--nl 
A < [ -O ,n-l[. 3) The mixed shift (M-shift). 

A is taken as the R-shift if OPn-2 > !n-1, the W-shift if 0Pn-2 < ,n-1, 
where 9 is a positive parameter to be determined. 

In case A is unitary, it can be written in the Schur parametric form A 

U(a, a2, ... , an), as expressed by (2.2). Hence the R-shift has the form 

A = -n-1an) 

and the W-shift is chosen as an eigenvalue A of 

S-an-20n-1 -an-2,n-lan 
On-1 -Cn-lan 
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which satisfies the following characteristic relations: 

6(A) := (A + n-2On--1)(A + + n-lan) + 
- n-2-1)nl 

(3.3) = A2 + 
(n-2n1 n_2an-) + n-2 = 0, 

(3.4) IA + 
n--•an 

! 
V/ln-21 jn-1 ! j 

+ 
a-n-2an-.11 

3.2. Initial-value modification of the shifts. Since unitary matrices (and scalar 
multiples of them) remain invariant under the basic QR algorithm (i.e., A(k) = 0 
for all k), it is therefore essential that nonzero shifts be taken in the unitary QR 
algorithm. Consider the simple unitary matrix 

001 
U= 1 O O 

010 

as an example. If we follow the conventional definition for either R- or W-shift to 
determine A, then A = 0 and the unshifted QR transformation produces no change of 
the matrix at all; that is, U = U. This is indeed the case for any unitary Hessenberg 
matrices with /n-1 = 1 when the R-shift is applied, and with /n-2 = /n-1 = 1 
when the W-shift is applied. (A thorough investigation of the invariant Hessenberg 
form under the QR algorithm with Francis' double shift was given by Parlett [11].) 
To avoid any such invariant cycling we make the following modification for the shift 
in the QR transformation [4]: 

For unitary matrices in case the shift A following the usual rule 
is null, we take it to be any nonzero number with modulus equal 
to unity; for definiteness, we choose A = 1. The R-, W-, and M- 
shift with such modification will be denoted as the R'-, W'-, and 

M'-shift, respectively. 
Note that throughout the entire QR iteration this modification on the shift sequence 
A(k), if necessary, has only to be made at the very initial step, k = 1; subsequent 
values of A(k) will never be null again (in fact, IA(k) -- 1 eventually when (k) - 
0). The detailed analysis is given in Sections 6, 7, and 8. 

4. THE QR FACTORIZATION OF A - AI 

In this section our attention is focused on the QR factorization of a shifted 
Hessenberg matrix A - AI. Useful expressions and formulas that are crucial to the 
proof of global convergence will be derived. 

4.1. Characteristic polynomials. First we express the characteristic polynomi- 
als of the leading principal submatrices Ak of A in terms of entries of the conformal 
sections of the factor matrices Q and R. Partition A - AI = QR as 

Ak k X Qk IX-Rk X] 
!3kele X kele X l O X <k<n, E AkA- [crelek J O 

where Ak - AIk, Qk, and Rk are square submatrices of size k, and the X's are 
irrelevant submatrices of appropriate sizes. Clearly, from the upper triangularity 
of R, 

(4.1) Ak - AIk = QkRk. 
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n--1 
Since Q is unitary Hessenberg with positive subdiagonal elements 

{a}j= l, by (2.1) 
it can be written in the product form Q = GIG2 ... Gn, where Gj = Gj (yj), |yj 12 + 

=2 1, 1 <j < n; G = Gn(~y), I,?j = 1. Each Qk := E*QEk can then be 
expressed correspondingly in the product form 

Qk = GIG2 ... Gk, 

where Gj := E*GjEk is the kth leading section of Gj, 1 < j < k. Note that while 

Gj e Cnx", ~j E Ckxk. Since detCj = -1 for 1<j< k and det k = -yk, we 
see that 

det Qk = 
(--)k 

k 

and from (4.1) we obtain the following formula: 

(4.2) Xk = Xk(A) := det(AIk - Ak) = P1P2 ''' PkYk, 1 < k K< n. 

Here Xk is the (monic) characteristic polynomial of Ak, P1, P2,... , Pk are the leading 
k diagonal elements of R, and Yk is the kth Schur parameter of Q. Putting (4.2) 
in modulus form, we have 

(4.3) IXkl = P1P2"'' Pklkl = p12' P2pk 1- c, 1 < k < 
n, 

where a := 0. Observe that 
Xn- 

= PlP2 ... Pn, since I,I = 1. 

4.2. Recurrence relations. Next we introduce a specific form (see (4.9)) of the 

Szeg6 recurrence relations, which play a fundamental role in the convergence proof 
of the unitary QR iteration. 

We begin with the relations that the Xk satisfy for an upper Hessenberg A [17, 
p. 411]: 

Xo := 1, XI = A - all; 
(4.4)k- 

(4.4) Xk (A-lkk)Xk-1- k-1 Xj-1j3 j+1 

'" .k-20jk, 

1 < k < n. 
j= 1 

If, in addition, A is unitary, then the Schur parameterization of A 
U(al, a2, .. , an) gives (see (2.2)) 

tjk 
:= 

ejAek = -j_-lj/?j+l1 
- 

13k-lak, 1 < j ?< k < n, ao := 1, 

and, using this expression in (4.4), we get 

k 

Xkk 
-AXk-1-- 

E Xj-ljfj+l"... " 
k-1Ojk j= 1 

k 
= AXk-1 + akZ 1(j-jj-/jj+1 

. 3k-1)2 
j=1 

(4.5) =: AXk-1 
- 

kkk-l , 
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where we have assigned ?k-1. Hence 

k+l 

Xk := 
Cj-l•1j-(/ 

jj+1 
" " 

k)2 
j=1 

k 
+ /2 )2 = akXk + k Z:j-l~j-X (1jfI+1 k-1) 

j=1 

= Ck(A Xk-1 •+akXk-1) ?0 kXk-1, from (4.5), 

(4.6) = Xk-1 + lkXsXk-1, since 1akl2 + o = 12 

Summarizing (4.5) and (4.6), we get the Szeg6 recurrence relations for the unitary 
Hessenberg matrix U(a, a2, ... , On): 

(4.7) 
Xo := 1, o0 

:= 1; 
Xk = Xk-1 + 

ak(k-k1, 
Xk = Xk-1 + akAXk-1, 1 < k < n. 

The characteristic polynomials {Xk (A)}=0 of the successive leading principal sub- 
matrices of U are also called the (monic) Szego polynomials associated with the 
Schur parameters {Jk} =1 of U [6]. It can be shown by induction that the auxil- 
iary polynomials {Uk(A)})=o in (4.7) satisfy Xk(A) = AkX (1/A), with the super- 
script c denoting complex conjugation of the coefficients of a polynomial. Note that 
ak Xk (0). For further applications of these polynomials, see [7]. 

We may put Xk in product form similar to that obtained in (4.2) for Xk [6]: 

(4.8) 3k =: P1P2'... PkYk, 1 < k < n. 

Then, since plP2 ... Pn-1 > 0, (4.7) can be replaced by 

(4.9) 
'0o 

:= 1, yo := 1; 
PkYk = -Yk-1 + akk-1, Pk=k k-1 + akA-Yk-1, 1 < k < n. 

Note that 

(4.10) 12 + Uk 1, k2 + 2o = , 1 < k n, 
where 

an :- 0. To see why k k2 + I12 = 1, we can make use of the two recurrence 
formulas presented in (4.9) (subtracting the square of the modulus form of one from 
that of the other), together with Iak 2 + 0/ = 1 and k =- kPk, to obtain 

- -k2 O= (k--12 - IA1 2k_ ), 1 < k < n, 

from which an inductive argument, with the use of 1k 2 + a 1, proves the second 
identity in (4.10). 

4.3. A residual estimate. In the Hermitian tridiagonal case a constructive proof 
for the global convergence of the shifted QR algorithm was obtained by exploiting 
the connection between QR and inverse iteration [3, 8, 13]. We generalize this 
approach and derive a residual bound for normal Hessenberg matrices. 

Let A be normal Hessenberg. Take the conjugate transpose of A - AI = QR and 
postmultiply by Q to get 

(A - AI)*Q = R*. 

Equating the last column on each side gives 

(A - AI)*qn = Pnen, 
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where q, := Qen and p, := e*Ren O0. Since A is normal, Il(A - AI)qnll 
II(A - 

AI)*qnl- 
= pn, and (A, qn) is an eigenpair of A if and only if pn = 0. Assume 

A 0 A(A) and hence pn > 0. Put x := qn/Pn so that 

(4.11) (A - AI)*x = en. 

Partition A - AI and let 

An-2 - 

Aln-2 

X 
(4.12) B := [B1 B2] := A - AI =I , [ 

n-22een-2 A2 - Al2 

where 

B2 [2 -AlX ] C2 X e C(n-2)x2 

and 

(4.13) A2 
: 

On-,n1 n-1n 2x2 
Pn-1 COnn 

We look for an upper bound on p, (or a lower bound on lix I = 1/p,) by considering 
only the last two equations of (4.11), that is, 

(4.14) B2x = e2, 

and calculating the norm of the "minimal solution" X of this underdetermined 

system in the sense that 11 
11_ 

I 11lx11 for all the solutions x of (4.14). This can easily 
be done by forming the QR factorization of B2. Let 

B2 =:Q2[ R2 

where Q2 E Cnxn is unitary and R2 E C2x2 is upper triangular with positive 
diagonal elements. Then (4.14) is equivalent to 

[R O] Y• ] e2, 
2 Y 

where Yl :=y = Qx, and yi E C2, Y2 E Cn-2. Since 
2 = 2 = 

IIx|22 = IIQ*XI11 = I Y 
2 

= Ilyl l• + 11 2 > 11Y, 1 2> 
the length of the minimal solution ^ is obtained by setting y2 = 0 and computing 

Illy i from yi, which is the unique solution of the triangular system 

(4.15) R yl 
= e2. 

Putting 

R2 
[P11 P121 

0 P22 

in (4.15), we get yl = [0, 1/P22]T and 

1 1 
(4.16) iy 112 2= X12 ? 112 - 

P22 Pn 

where, from the triangularity of R2 and the unitariness of Q2, 

det(R*R2) 
_ 

det(B*B2) (4.17) P22 = eRR2e eBB2 2 
1 2 1 12 2e21 
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Hence combining (4.17) with (4.16) we have 

det(B*B2) 
(4.18) p2 

- -22 
Pn- B* aB21 1 2UZC 

Next, we seek a simpler formula to compute B*B2 E C2x2 in (4.18) by taking 
advantage of the normality of A. We claim 

(4.19) 
B2B2 

= ?2elet + (A2 - A12)(A2 - A 
,2), 

where A2 is the lower right 2 x 2 submatrix of A, as was defined in (4.13). Since 
B := [B1 B2] := A - AI is normal, formula (4.19) is readily obtained by equating 
the lower right blocks of B*B and BB* (cf. (4.12)): 

B*B = [Bi B2[ BxB2 B* X B*B2 

BB* An-2 - In-2 X (An-2 - [ In-2)* n--2en--2e*l 
3n-2,1ee2 A2 - A2 X (2 - 2 

n- 2 ( - X12) 

XD D 

where D := 
P.-2_elee 

? (2 - +12)(2 - A12)* E C2x2 and the X's are irrelevant 
submatrices of appropriate sizes. From (4.18) and (4.19) we obtain an upper bound 
for p2 expressed in terms of A, On-2, and the entries of A2 in the following lemma. 

Lemma 2 (A residual bound). Given a normal Hessenberg matrix A E Cnxn with 
positive subdiagonal elements {Ik }n-1 let 

Pn 
be the last diagonal element of the 

upper triangular matrix R in the QR factorization of A - AI, where A E C is the 
shift, and let qn be the last column of the unitary matrix Q. Then 

•2 o21 + On2-21n n- A12 + JJ(A)12 
(4.20) II(A- 2I)qn2 

-2- 
(4.20-2 + In-,n- - A2 + Ian-l,nl2 

where 6(A) := det(A2 - AI2) = 
(an-l,n-1 

- )(ann - ) - an-1,n n-1. 

Remark. The bound we obtain in (4.20) is in fact a least upper bound, which can 
be attained in extreme cases. For example, let 

a+V/3 2-2 0 -6 

(4.21) A = a 0 /3 
0 P a 0 
0 O p a 

where a E C, 33 > 6 > 0 (cf. [9, p. 132]). Clearly A is normal (Hessenberg). If we 
choose A = a (which is both the R- and W-shift), then it is easy to see that 

Q=(A - aI), R = I, P= 
and that equality holds in this case: II(A - AI)qnl = pn = P. Actually, with shift 
A = a, matrix A is invariant under the QR transformation defined by (3.1) and 
(3.2). 
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5. PROPERTIES RELATED TO CONVERGENCE 

We say the QR algorithm is convergent if the last subdiagonal element /3k), 
of A(k) in the iterating process converges to zero; in other words, the last row of 
A(k) tends to a limit form A(k)e*, where (k) E A(A) [3, 13]. As we shall see, 

convergence of ?f(k) depends on how we choose the shift sequence A(k), and the 
selection of an efficient shift strategy is of crucial importance to the implementation 
of the algorithm. The lemmas and theorem presented in this section will be applied 
repeatedly later when we discuss convergence of the algorithm with the various shift 
strategies. The next lemma is a modification of [18, Lemma 1] used for tridiagonal 
QR. 
Lemma 3 (Boundedness property). With any of the shift strategies mentioned be- 

fore, all elements a jk) of A(k) are bounded by IIAll, the spectral norm of A, 
and all elements derived from the QR transformation of A(k) (and hence all ele- 
ments of R(k)) are bounded by 211All for all k, the iteration index. Consequently, 

Sk) ((k)) := det(A(k)Ij 
-_ 

Ak)) and 6Jk) k) 2) (k) are bounded for all 
and 1 <j < n. 

Proof. It is clear that la•)I, /jk) < I1A(k)I = IAll, likewise for the shift A(k) because 

it is chosen as an eigenvalue of a submatrix of A(k). Let pk) be the ith component 
of the jth column vector rk) in R(k), and =: k) Then vs II~JVI ~VUIIIIYL~UVLIj 11Ilr) C~II rj 3 

S(k) Ir(k? IIR(k)II - Q(k)R(k) = A(k) _ A(k) 

< IIA+(k)/+(k)I|1 < 211A. 
Therefore 6jk) are bounded and Ix(k) I< j(k), by (4.3). O 

To estimate the rate of convergence for (k) - 0, we need a relation between 

3n-1 and 
,n-1. Jiang and Zhang [10, Lemma 2] proposed a relation for real sym- 

metric tridiagonal matrices. In the next lemma we extend the relation to Hessenberg 
matrices; at this stage normality of the matrix A is not required. 

Lemma 4 (Relations for the subdiagonal elements). Let A be the QR transform of 
A with shift A. Then 

k 

(a) kk = 
fi1•-i 

+ IXk(A)t = E (Ixj(A)fIj+lfj+2 *ik)2, 
j=O 

where 6k:=k P1P2... Pk, 1 <k < n, := 1, fin := 0, 

(b) 
fin-1 

= 

]f2ni2_ 
- 
1-(-- 

)12 
i 

Proof. 

(a) 62 
-= 

26 + I + k 26 , because a + yk12 1, 

S (p6_1 ) + ykl 262, from the definition of 6k, 

= o2621 + xk(2)12, since fik k Pk and Xk(A) = P1P2'' Pk7Yk. 
By induction on 62, j = k- 1, k - 2,..., 1, we get, with 60 := 1 = 

Xo(A), 
k 

I - 
Z-(Ixj(A)iy+lfj+2 

... k)2 
j=O 
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(b) 
)3n-1 

= an-IPn = 
jPn) On-1, from Lemma 1(a), 

n26n= 

- 
n-1, from the definition of 6k given in (a), 

n-1 

Sn- (2nA1 ) n-,, since IXn(A)I = 6n from (4.3), 

= n2P2 
6 n(A) n-1, by applying (a) to 6 
1 

n 
_2 

-+ - 
I ( 

n- 
l (A ) 12 

Lemma 5 (Basic facts from normality). Let A be normal. Then 

(a) the eigenvalues of A are mutually distinct and 
(b) IXn - (A - <nn) n-11I ? 3--6n-2. 

Proof. (a) It is clear that the eigenvalues of an unreduced Hessenberg matrix have 
unit geometric multiplicity. Since normal matrices are unitarily diagonalizable, 
the eigenvalues of an unreduced normal Hessenberg matrix can only be mutually 
distinct. 

(b) From the recurrence relation for Xk in (4.4), we have 

IXk - (A - 
Okk)Xk-1I 

k-1 

= /k-1 Xj-10jj+1 3 + k-2jk 
j=l 

k-1 I)1/2 (k-1 )1/2 
A k-1 EIXj-13jIj+1... OIa -212 ljk12 

j=1 j=l 
by applying the Cauchy-Schwarz inequality, 

k-1 1/2 

= Ok-16k-2 Ojk2 , 
from Lemma 4(a) after shifting the index j. 

j--1 
n-1 

Now let k = n; since A is normal, the last factor ( E jjn2)1/2 - /n-1 and the 
j=1 

inequality is proved. D 

Theorem 6 (Convergence properties for the QR iteration). Assume A is normal. 
Let A(k) be the unreduced QR iterates of A with either the R-shift or the W-shift, 
A(k). 

Ifn13__k) 

-+ , then: 

(a) A(k) -+ 
A•n 

for some An E A(A); 

(b) 

lx(k_(A(k))I 
> an-1+O(e), 

where a := 
minj:k{IAj 

-Akl : Aj,Ak E A(A)} > 0 
and e is an arbitrarily small number; 

(c) p) 
-- 0, and 

{j-k) 

}11 are bounded away from zero. 

Proof. (a) If /(k), -- 0, then, according to Hessenberg structure of A(k), the last 

diagonal element an(n) clusters to an eigenvalue of A, say A(), which may depend 
on k; that is, 

() O -- (k) Ak)) - 0 for some A() E A(A). 
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From the QR transformation: A - AI = QR, A - AI = RQ we infer, with the 

normality of A, that 

(o--1 
+ ? nn - 12 1/2 

= IA(A - AI)11 = lieRQI = IleRII = pn 
< |IRell = IIQRenI1 = II(A - AI)enIl = II(A - AI)*enII 

(5.1) = 
(n2-1 a+ Inn - 12)1/2 

Hence an(k+l) - n 
(k) - 0, as 

-)1- 
0 and 

(52) ( (k) = 0with the R-shift 
(5.2) <ak) 

- A 
l(k) k I )1 /3) -+ 0 with the W-shift. nn 

-- 
"n-l,n 

n 

1 

Therefore, aoln1 - a nn-+ 0 and, since the eigenvalues of A are mutually distinct 

(Lemma 5(a)), the sequence an converges to a fixed eigenvalue An of A. So does 

A(k), the shift sequence, by (5.2); that is, A(k) -- A7n for some An E A(A). 
(b) Let A1, A2,... ,An-1 be the remaining distinct eigenvalues in any order so 

that for A E C 
n-1 

(5.3) Xn(A) = (A - An) nJ(A - Aj). 
j=1 

Let 0(k) *+ +$(k) denote 1,(k) _ (k) 0 as k ,-* c. From Lemma 5(b) there 

follows, as 
•k) 

0, 1 n-1l-)0 

xn(A(k)) (A(k) _ 
a(k)X)n1 

(A(k) 

(5.4) (A(k) -An)Xl(A) 

since an 
-- 
An 

, as proved in (a), and 

Ixn-1 

(A)) is bounded for all k, by Lemma 3. 

Comparing (5.4) with (5.3) we have, as (k) - 0, n1 

n-1 

X i(A(k)) (A - 
Aj=) 
j=1 

Since A(k) - 
n A, as 

13- 
-1 0, this gives, for a sufficiently small e, 

(5.5) 
Ixn1l(A 

(k))I I 
rn-1 

+ O(e), 

where c := min { Aj - AkI : AjAk A(A)} > 0. 
j3k 

(c) This is a direct consequence of (a), (b) and Lemma 3: As 
3(1 -- 

0, A(k) 

An E A (A) and hence 

•Xn(A(k))I _= 
p .k) 

k 
k)) 
. ~(k) -+ 0, 1 P2 n? 1 

but from Lemma 4(a) 

(k) (k) () (k (k)2(k)2 (k21(k)A 2 
P1 P2 n- 

V/Jn1 l n -2 
+ O(E), by (5.5). 

?_ 
Ix(Ak)) 

_ Oxn-1 +-O(E), 
by (5.5). 
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Finally in this section, we examine, for unitary Hessenberg matrices with ~n-1 = 
1, how 0,,-1 can change after one QR step if a nonzero shift is taken. Eberlein and 

Huang [4, Lemma 1] showed that 0,n-_1 < 1 by a plane-rotation argument; we prove 
this instead through a constructive inequality which is useful for the analysis of 
numerical decrease of !n-1 from unity. 

Lemma 7 (Nonzero shift in the extreme case). Let U be the QR transform of U 
with any nonzero shift A, 0 < JAI < 1. Assume on-1 = 1. Then 

-+_ n2 _ 2 
(5.6) /On-1 _ <jA 1A2 

+ -2 1 n-2) 

where n-2 := e-_lQen_2. 

Proof. From the recurrence relations (4.7) we have 

Xn = AXn-1 + LnXn-1 

- A(AXn-2 + an-ln-2) O+ n(n--2 + an--~1Xn-2) 

= A2Xn-2 + ann-2, since fn-1 
= 1 

= an-1 = 0, 
and hence, after taking modulus on each side and eliminating the common factor 
P1P2 " " Pn-2, 

(5.7) Pn-lPn = - 2-n-2 + 
JLann-21, 

because Xk = -P1P2 '' 
Pl 

kik, n| =I- 1, and 
ik 

= P1P2 ... Pkyk. Similarly, working on 

Xn-1 =-- AXn-2 an-ln-2 n-2 

gives, with the modulus on each side squared, 

2-_1_7n- 112 12 -2 2 
Pn- 

1 
n-1--IXlIYn-21 

Combining this relation with the identity 
2 2 2 

Pn-1n-1 -- n-1 

side by side (note that 
,yn-_12 + g21 = 1 and on-1 = 1) we get 

(5.8) p2- 1 21Yn- 12. 
From (5.7) and (5.8), together with the fact that an_- P= n-1- 

I 
- , we obtain 

Pn-1 Pn-1 

fin-- 
= Un-1Pn =Pn-2n - I + 

O2+nyn21 Pn- - 1 + 
IA121?n-2_2 Therefore, 

- 
AI2 1Yn-2? A 

[n-2 
2 1?2-2+_2n-2 n- < 1+|A12-n-21• 1 + 2(1 2 

n--O _2) 
by applying the triangle inequality and the identities (4.10) in tandem. To show 
that the right-hand side of the above inequality is less than 1, we square both sides 
and obtain, after some calculations, 

1i- 1- 1 2 <_ 2 122 
11- 1 + IA12 2(1 I 2-2 L 

--Cn2) 

since 0 < | A| 1 and 0 < an-2 2 1. 
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Remark. To obtain the result (5.6) of Lemma 7, we have used the triangle inequality. 
By varying a, in (5.7) we see that, for a given fixed shift, say A = 1, the bound 
can be attained. (However, in the usual shift strategies, A will depend on an.) Let 
us examine, with A = 1 in (5.6), how close to unity the right-hand side of 

2V1 - 2 
(5.9) On- 2 - an-2 

could conceivably be. Asymptotically, as Un-2 -+ 0, 

2V/1 -U- 4 6 
2 1 n-2 2 14 16 

2 - a28n-2 6-2 

Now, for JAl 1, On-2 = an-2Pn-2 < 20n-2 (see Lemma 3). Hence the decrease 

1 
(5.10) 1 - n-1 

4 
- 4--2 128 

cannot be arbitrarily small. On the other hand, if equality in (5.10) were (nearly) 
possible and On-2 = e is small, a tiny perturbation of order f-_2 could easily not 
be detected by the computer. Consequently, the numerical value of on-1 could 
stay at 1 with the nonzero special shift A = 1. However, if the W-shift were used in 
this exceptional case (i.e., in-1 = 1, On-2 = E), fn-1 

would drop to a small value 

< E in one QR step (using the inequality On-1 ? /On-2 given later in Lemma 11(d)). 

6. CONVERGENCE WITH THE RAYLEIGH SHIFT 

There is an intimate connection between the Rayleigh quotient iteration (RQI) 
and the QR algorithm with the Rayleigh shift, and the convergence properties of 
RQI can be translated (with a proper selection of the initial vector) into statements 
about QR with the R-shift [13, pp.144-148]. Extensive analyses and rigorous proofs 
about convergence of RQI were given by Ostrowski, Kahan, and Parlett; for details 
and further references, see [12, 13]. In the QR language, results were given by 
Wilkinson [18] for symmetric tridiagonal matrices and by Eberlein and Huang [4] 
for unitary Hessenberg matrices. In fact, more general (but weaker) convergence 
results for normal Hessenberg matrices, closely related to the minimal residual 
property of the Rayleigh quotient, were given in Buurema's thesis [2]; see also 
the results obtained by Watkins and Elsner [16] using nested subspace iteration 
analysis. Here we derive some of these properties through the use of recurrence 
formulas, and summarize them for comparison with those from the W-shift, which 
is analyzed in the next section. These results will again be used in the final section 
to establish the convergence of QR with a mixed shift strategy. 

For normal matrices, the monotonicity property <n-1 
_ 

3n-1 
with the R-shift 

is well known [12], and can be readily seen from (5.1). In the unitary case (with 
the R'-shift), we derive a strict inequality between 

n-1 
and , (-1 (and thus, in 

exact arithmetic, a stationary state of 0n-1 will not occur), and from which global 
convergence of either ,_-1 or /n-2 to zero is a direct consequence. 

Lemma 8 (Monotonicity property). Let U be the QR transform of U with the R - 

shift A. Then 
n-,1 

< On-1; more precisely, 

(a) n-1 1 - (1 - f2__)aO-2 
1nln1 

< ln-1 if n-1 < 1, 



CONVERGENCE OF THE SHIFTED QR ALGORITHM 1487 

(b) 
n-1 

< 21 1 n-2 <1 if 1. m~n-2 

Proof. (a) If in-1 < 1, then A = -,n-lan , 0 and 

Xn = AXn- + anXn-I 

= A(AXn-2 + an-1n-2) + an(/n-2 + an-1,Xn-2) 
- an(1 - an-112)Rn-2 

- an'n-1in-2* 

Hence 

Ixn- 
= -i3-1 in-2I, 

and 

Pn = 
I[n-2l1Un-1•n-1 

after using (4.2),(4.8) and Lemma l(a). Therefore, 

(6.1) in-1 = 
On--Pn 

= 
IVn-21n -1)3n-1 

= 1 
--(1--2__)0"-2 0122 _n-1, 

since In-212+IAI2 -2 =1 and A•A = Jan-11, 
< n-1, because 0 < 3n-1 < 1 and 0 < ak < 1. 

(b) If On-1 = 1, then A = 1 by definition of the R'-shift and the result is just a 

special case of (5.6). El 
The result given in the following theorem is already known [4, Lemma 2], and 

here we prove it in a different way by using formulas derived from the recurrence 
relations. 

Theorem 9 (Global convergence). Let U(k) be the QR iterates of U with the ex- 
clusive use of the R' -shift. Then either (k)1 -- 

0 or 

O-2 

)-+ 0. 

Proof. By Lemma 8 the sequence 'i3k) decreases monotonically and thus tends to 
a limit 6, say. If 6 = 0, then i- -+0. If 6 > 0, then, from Lemma 8(a), 

- 1 - (1 - 2) 2 
U 

)2 

fn--1 
and the left-hand side tends to unity since (k)i - 6 > 0. Hence a(k) 1 

ok2 
-( 0 on the right-hand side, and therefore 

(k) 
_ 

= (k) (k) 
fn-2 Pn-2on-2 -?0 

because 

p(nk_2 

is bounded, by Lemma 3. O 

In practice, convergence of P(k) ? 0 (while '(k) - 6 > 0) is exceedingly slow 
as compared to that of '3k ' 0 which, if it occurs, has a cubic rate as we provide 
a simple proof in the next theorem. Note that a proof for the more general case, 
namely, that for normal matrices (indeed, for matrices with properties weaker than 
normality) the QR iteration with the generalized Rayleigh-quotient shift has cubic 
rates if it converges, was given by Watkins and Elsner [16] using subspace iteration 
technique. 
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Theorem 10 (Local convergence). Assume A is normal. Let A be the QR trans- 

form of A with the R-shift A. If 
fin-1 O0, then fin-1 

= 
O(P3-1), 

that is, the 

asymptotic rate of convergence is cubic. 

Proof. 

n-1 (n-_2 
n 2 fin-,, from Lemma 4(b), 

<6 -2 3 

1 n--2 
- Xn--l(A) 

2 3n-11 

since |Xn(A)| ? 
<3f16n-2 by Lemma 5(b), 

= 
O(03_1) 

as fin-1 - 0, from Lemma 3 and Theorem 6(b). 

7. CONVERGENCE WITH THE WILKINSON SHIFT 

We now arrive at the main results of this paper: global convergence (Theorem 
12) and local convergence (Theorem 13) of the QR iteration with the (modified) 
Wilkinson shift for unitary Hessenberg matrices [14]. We begin with a technical 
lemma in which a constructive analysis for the decrease of 

in-2fln_1 
in one QR 

step is given, through the use of the basic relations stated in Lemma 1 and the 
residual bound (4.20) obtained in Lemma 2. This approach was used by Parlett 

[13, Chapter 8] in the Hermitian tridiagonal case; see also [3, Lemma 7.4]. 

Lemma 11 (One-step changes and relations). Let U be the QR transform of U 
with the W-shift A. Then: 

(a) 
<n--1 Pn , 1+ /1-i -2 

n-1 < v/ n-I; 

(b) 
Pu1 

p < p• (O n-21n-1n-20n-1 < On-20n-1, 

where 

fin-2fn-1 + fn-2 1F 2 n-1 

w(fin-2, fn_-l) - 

-2 2 - 1 2 
1 

2 On-2 + J1 
-20 

1+ 
(1- 

n_-2) 
ln21 

and 
(i) 

0 < W(fn-2, n--l) 

min[ 
2_f, 

in-2] if-fn-2> 

min[ 1 ifn-12 mm 
/[2-13n/' 1? 

lf2_ 
n- 

(ii) w(Pn-2, fn-I) 
-+ 1 if and only ifn-1 

--* 1 and 
fin-2 1; 

(C) fln-2,'1 
? 

W(fin-2, fn-1),fn-2fn2-1 
< 

fn-2f2--1; (d) if Pn-1 = 1, then 
fn-1 < fn-2; 

(e) if On-2 = 1, then the W-shift degenerates to the R-shift, i.e., A = - _n-lan; 
(f) Xn(A) - fn-2(an-1,•+ an)3n-3(A). 

Proof. First of all, (b) is readily obtained from the basic relation (c) (i) of Lemma 

1, the residual bound (4.20) derived in Lemma 2, the characteristic relations (3.3), 
(3.4) for the W-shift, and the Schur parametric form of U given by (2.2); properties 
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(i) and (ii) of w(4n-2, n-l) are derived in the Appendix. (c) is from (b) and 
Lemma l(c)(iii). From (b) we have 

p2 ? 
w(On-2,1 

n-1)On-2Pn-_I 

(1 + 

1TnV 

2)F-3 n2-1 
< 

2/n_1; this gives (a). Setting 
n,_1 

= 1 in (b), we obtain, with w(On-2, 1) = n-2, 

this gives (d). Since 
lan_2- 

- 
=V1 

-/3_2 

= 0 if On-2 = 1, (e) is trivial from (3.4). 

Finally, to prove (f), substitutions of the recurrence relations from (4.7) give 

Xn AXn-1 i anxn- 

- A(A + an -lan)Xn-2 + (an-i + an)Xn-2 

SA[A2 (n-2n-_1 + n-_lOn)A + ,n-2anln-3 
+ [an-2A2 + 

(cn-2nn-1an+ 
?nI)\ + 

Oa],n--3 
3- /-_2 (On--1, 

A+ n)Xn-3, 

where, for the last equality to hold, we apply (3.3), the characteristic equation for 
the W-shift. Ol 

Theorem 12 (Glocal convergence). Let U(k) be the QR iterates of U with the 

W'-shift used exclusively. Then 
n-_1)3 

can be majorized by /F 2 
•- )212 which is monotonically convergent to zero with a substantially decreasing ratio 

W(0 ()2, (1) and hence 
i(k) 

-+ 0. 

Proof. If, and only if, n-2 = 1 and ,n-1 = 1 in the very beginning, the unit shift 
A = 1 is applied. (Only in this exceptional case does the W-shift become null.) 
Then, by Lemma 7, 3n-1 

< 1 in one QR step. Therefore, with the W'-shift, there 
is no loss of generality in assuming that the starting value of 

3(k)1 

is less than unity, 

say := P < 1. This implies, from Lemma 11(b)(i), that 

(7.1) 
n(1• 

1 1 

At each QR step U -+ U, 

(7.2) n-^2 -1 S W(n-2, /n--1)n--2n2-1 
: n-2 2-1 

by Lemma 11(c). So n(k) ~n(12 form a bounded monotonically decreasing sequence ? 
n-21n--2n--1 

as 
2kI) 

-(k)-2 

-+ 6 > 0. From Lemma 11(b) (ii) this implies that 

3(k_) 
-- 

1 and 

23(k) 
-+ 1; hence 2(k)2~k)2 

-* 1. But from properties (7.1) and (7.2), for k > 2, 

(k)j Q )22 
k 

1 • 2n1) /n(1)2 
- 

32 
Lj=1 

a fixed number which is strictly less than unity, a contradiction. Therefore, 

(k) 42(k \)2 0. On'--2n--1lNO 

Since from Lemma 11(a) and (b) 

0^3 21< n 2 
n--1< '2n-20n4-jil 
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at each step i(k+1)3 is dominated by 'F 2(k)-(k)2 which converges monotonically 
to zero with a ratio w(P (2, (k) )) 1 - -- n--1 

We now examine the asymptotic behavior of I n1, as it converges to zero with 
the use of the W-shift. The iteration index k is usually suppressed and, to represent 
g?b(k) - (k) -* 0 as k -- 00, we use the notation 4 

p+-* 0. 

Theorem 13 (Local convergence). Let U be the QR transform of U with the W - 

shift A. Then, as 
,n-1 -- 0, 

(a) 
Ixn(A-)l 

~ + O(-21n- n-3(A) = 0 2 - 1) 
(b) 1n-_ = O(P1-2i3-1), that is, the rate of convergence is cubic in n-i1. 

Proof. (a) We claim, as 3n-1 --+ 0, the following asymptotic relations: 

(ii) an-lA + an - anO 
_1? 

(i)a1A ? cn-1. 

While (ii) comes from (i) directly with some simple calculations (note that 
lan-1 2 + 32_-1 = 1 and iani = 1), (i) comes from a characteristic property of 
the W-shift given in (3.4): IA + dn-lanl < 

ln-_21 
on-1. Therefore, 

xn(A) = 
n2(anl~ an)(n-3(A), 

from Lemma 11(f), 

Sasnpn-21n-lXn-3(A), by (ii), 

and 

Ixn(A)I I -+ -20 -1 [n-3(A)| = O( 
- --2I,3-) 

as a n1 - 0, 
since Ixn-3(A)l is bounded. 

(b) 

fin--1 = 

•( 
2 

-6-2Xn(A) 

2 /3n-1, from Lemma 4(b), 
16 FSn -2 n-3( A1 2)I 

Ixn-l~I2 
j1in3 -2f3-1 as n-1 -* 0, by (a), 

= 
O(2-_213-1), 

from Lemma 3 and Theorem 6(b). 

Remark. Let us take a closer look at why, with the Wilkinson shift, the asymptotic 
rate of convergence for unitary Hessenberg matrices is cubic. (That for Hermitian 
tridiagonal matrices can only be shown to be quadratic [18].) From the character- 
istic relations (3.4) and (3.3) for the W-shift A, we have 

(7.3) IA + 
d,--lan_5 

V/Ja-n- 21 On-1 

(7.4) IJA+ d,-2n- 11 A+n-lanI = Ian,,-2I2-1. 
We see directly from (7.3) that, as in-1 -+ 0, IA + 

n,_lanl 
= O(,n_-) at least; 

however, in the unitary case, the factor I|A + n-2an-1l in (7.4) is always bounded 
away from zero (without any further assumption like Pn-2 -+ 0, as is usually made 
in the tridiagonal case [8, 13], in order to guarantee cubic convergence of 0n-1, see 
the analysis given below); consequently IA + an-la,l = 

O(2_-1) 
as 3n-1 -+ 0 by 

(7.4); this is equivalent to lanlA + an O(32 _) as 
3- 

--+ 0, shown by (ii) in 
the proof of Theorem 13(a). 
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We analyze this in more detail. Recall that, as P3n -•+ 0, the shift A --+ An for 
some fixed eigenvalue An E A(U) (Theorem 6(a)), and so 

(7.5) JAI - 1 and I|an-1 -- 1 as n-1 i 0 
because I A = 1 and la,- 12 + n-1 

= 1. 
Now examine the behavior of A + an-2an-11 as n-1 --+ 0 by checking the 

n(k) 2 sequence. If there is a subsequence 
43)-2 

-+ 0, then for this subsequence, 

i(j)2 
1"-) 1) for some A) z A(U) distinct from An anyway (see (2.2) and 

Lemma 5(a)). Hence 

(7.6) 
A_(j) 

+ d 2 1an 
(j) I - 1 >l o > 0. 

For the rest of the sequence, 
nk-2 

2> ( E In(21 < 1 - 2 ) for some e, where 
0 < < 1. Then 

(7.7) JA(k) nk)2anl - I -(k)A 
--In 

21 12n 1 - 1-e2 > 0 

eventually, by (7.5). We conclude from (7.6) and (7.7) that, as _n-1 
- 0, 

IA + n-2an-l 2 6 > 0 for some 6 < min{o, 1- - 2}, 
that is, A + 

6dn-2an-,_l 
is always bounded below from zero. 

8. CONVERGENCE WITH THE MIXED SHIFT 

For theoretical interest we propose a general mixed shift strategy, with which 
the QR iteration has global convergence and cubic rates at least, and of which the 
modified Wilkinson shift (in Section 7) and the Eberlein-Huang shift [4] can be 
viewed as special cases. 

Theorem 14 (Global convergence). Let 0 be a real number, 0 < 0 < oo. Let U(k) 
be the QR iterates with the following shift strategy: 

(8.1) if 0 > use the R'-shift 
if e'n-2 - < n-1, use the W-shift. 

Thenf n1 -+ O0; in particular, 

(a) if 0 = 0, then the W'-shift is used exclusively, 
(b) if 0 0 < 1, then 

-1 
can be majorized by a sequence which is monotonically 

convergent to zero, 
(c) if 0 > 1, then 

fn1) 
< Pi)1. 

Proof. Similarly with the argument given in the proof of Theorem 12, we may 
assume the starting 1)1 =:i < 1 in all cases, and thereafter the R'- and W'- 
shifts are the same as the R- and W-shifts. The implication of (a) is trivial from 
(8.1), because 0 < (k) is always assumed and convergence of (k) with the W'- 
shift was proved in Theorem 12. 

(b) Consider one step of QR: Since 

< f ,-1 
? Ofn-2 n-1 if the R-shift is used (by (6.1) and (8.1)) 

SW(n-2, in--1)/n--2 n-1 if the W-shift is used (from Lemma 11(b)), 
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we have 

Sn-2 
2 -1 / n-1P2 (from Lemma 1(c) (iii)) 

< max{0, W(/n-2,1 n-1)}jn-2/-2n-l, 

where 0 < 0 < 1, 0 < w(On-2, n-1) < 1, and 

n3 /O3-1 
0 

n-2/n2-1 
if the R-shift is used (Lemma 8 and (8.1)) 

n-1 
< 

n• 
n 2_1 

if the W-shift is used (Lemma 11(a) and (b)). vf2 On-20nn- 

Therefore, 

1(k+1)3 ,: V/2 (k)22 
n-1 

n-2 n-1 

and 

( 2 2\(k)2 3n_-2tn-l \ O, 

by the same argument as stated in the proof of Theorem 12. 
(c) We show, for 0 > 1, n-1 < 'n- and 1 \ 0. 

Clearly ~,n- < /n-1 if the R-shift is used. For the W-shift 

2_1 < W(n-2 n-1)n-2n-1 (from Lemma 11(b)) 

(8.2) < W<3(On-2,c n-)_1 (using (8.1)) 

n- 
-1 (since 0 > 1 and 0 < W(On-2, /n-1) < 1). 

Hence the monotonic decreasing of (k holds. 

To further conclude that ~ \ 0, we consider two situations (which are mu- 

tually exclusive): 
(i) The W-shift is applied infinitely many times. In this case 

(k)2 l)2 if the R-shift is used 
'-1 < 1 (k)2 if the W-shift is used, 

where 1 is a fixed number less than unity, because from (8.2) we know 
0V/2-2 

1 ( /3k ) 1 

S(lk-)2 
1) 

(by Lemma 11(b)(i)) 
0 

2-- kn-21 

1 (since k is decreasing and 
?•: n1) 

0 
1i2_e02 

(nc 1). 

< 1 (since 0 > 1 and/3 < 1). 

Therefore, the entire sequence 
/(nk_) 

\ 0. 

(ii) The R-shift is applied ultimately. Then we know, from (8.1), that 

0•O(k)2 
> 

- 
.k1 eventually holds. If (k)1 \ 6 > 0, then, from (the proof of) Theorem 9, 

(k- 2 0 which by (8.1) implies (k) 1 -+ 0, a contradiction. O 

Though not important in practice, the sequence n(k)l itself might not decrease 
monotonically for 0 < 0 < 1 in the above theorem. To guarantee a monotonic 

decreasing of R(I) and a constructive convergence analysis, we could choose a 
function 0(Pn-2, fn-1), instead of a fixed number 0, in the mixed shift strategy 
such that w(3n-2,n-l1) < O(n-2, n-1) < 1; we further present the following 
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Corollary 15 (Global convergence). Let 

(8.3) 0(n-2,1 
n--1) 

:= 
min{(n-_), (n-2)} 

where 
1 

(/3n--1)" v2- --rn--1 

and 

S3n-2 if/n-2 > 3 
(n--2) 

2n232 
2 1_ ifOn3n2_ 2 

- - 2" 

Let U(k) be the QR iterates with the following shift strategy: 

(8.4) 
(k)n-2 

> 
? 1Il, use the R'-shi 

if (kn--2 <( 31, use the W-shift, 
where 

0(k) := 
• 

2,1), < (k) K 
1. 

Then 

~3_,- 

is monotonically decreasing to zero. 

Proof. Similar as part (b) of the proof given to the preceding theorem, with either 
shift (note that w(3n-2, 3n-1) ? 

O(/n-2,/3n-1) 1) 
2 2 

m 
in{2 n2 n-1 n-2n-1 3,- < p.<mn?.-,OO -in I)n23-l 

and we have 

3-1 
/n -1 i21 - 1 

n-n-1 
92 < O(n-2, !n--1)On-20!2-1 

-* 0, 

because (from Lemma 1(c) (iii) and Lemma 11(b),(c)) 

ni-2 02 - 
:n-12 

n 
8 (n-2, On-1)/n-2 2-1 ,un--2_ _1 rn -lr 

which implies, similarly as (7.2) did in the proof of Theorem 12, that 
/n-232_-1 0. D 

Remark. Eberlein and Huang [4] proposed a mixed shift strategy as follows: 
(i) If /n-1 1, choose JAI = 1. (Initial-value modification) 

(ii) If P/3n-2 < 3n-1, use the W-shift. 

(iii) If neither of the above holds, use the R-shift. 
From the modified version of the shifts defined in Section 3 (i.e., R-shift - 1 instead 
of 0 when 3n-1 = 1, and W-shift = 1 instead of 0 when /3-2 = 

-n-1 
= 1) this 

shift strategy can essentially be considered (with (i) included in (iii)) as a special 
case of the general shift strategy given in Theorem 14 with parameter 0 = /V2. 

In numerical computation, Eberlein-Huang's shift strategy may have the follow- 
ing drawback: If 0,_1 = 1 and /n-2 is very small, then, from the Remark following 
Lemma 7, there is a possibility that the shift under (i) may employ no decrease 
of ,n-1 from unity at all, on a digital computer with finite precision arithmetic. 
We do not worry about this if strategy (8.1) with 0 < 0 < 1 (or strategy (8.4)) is 
applied, because then the W-shift is used and in one step /3_1 becomes very small, 
by Lemma 11(d). In other words, one should always use the W-shift, instead of 
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the R-shift or a nonzero shift, in case Pn-2 is much smaller than fn-1, even when 

,3n-1 = 1. 

Finally we show, for all the mixed shift strategies considered in this section, that 
the rate of convergence is at least cubic, rather than just quadratic, as was claimed 
in [4, p.104] in the special case 0 = v'. 

Theorem 16 (Local convergence). Let U be the QR transform of U with the fol- 
lowing shift strategy: 

Sif 9n-2 2 
_ 

n-1, use the R'-shift, 
if On-2 < fn-1, use the W'-shift, 

where 0 is either a fixed nonnegative real number or 0 = 
0(3n--2, 

in-1) as defined 
by (8.3). Then, as On_ - 0, On-1 = 

O(••_1) 

at least. 

Proof. For the R-shift, n-_1 = 
O(f3_1) by Theorem 10; for the W-shift, 3n-1 = 

O(P-0223_-1) 
= 

O(P5_1) 
by Theorem 13 and 0Pn-2 < n-1 in this case. O 

APPENDIX. BASIC PROPERTIES OF W(fn-2, n-1) 

In this section we do not follow the notational conventions used in the main text; 
here, all the quantities dealt with, whether represented by Greek letters or not, are 
positive real numbers less than or equal to one. In Lemma 11(b) we have, with 
in-1 =: x and On-2 =: Y, 

n-2 ,3n-1 
1 

3n-21i32 2nn-1 

222 - -2 2/-1 
( 

n2_2 + V/1 2 2 2 2 

xy + xy V1- y2 

y2 + x2 
V1--_y2 

+ x2(1 - y2) 
xy 

1 - (1- x2)/1-y2 

=: f(x,y). 
Properties of f(x, y) are given in the following 

Lemma. Let f(x, y) = xy O < x 1, O < y 1. Then 
1-(l-X2) l-y2 

(a) 
f(x,y) ? 

min{O(x),O(y)} 

/min 
1Y 

y, 
}EifY> 

min , 1? + ify 3 V271- y, 2 
fvY- 2, 

where 
1 

v2 - 

and 

( Y ify>• (y):= 1 + ify< l Y :5- 2 
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are increasing functions of x and y, respectively, and 
1 1 

(b) 0 < f(x, y) ? 1; f(x, y) -- 1 if and only if x- 1 and y --+ 1. 

Proof. For each fixed x, 0 < x < 1, f(x, y) has a global maximum at y = x /2 - 2. 
Hence 

(A.1) f(x, y) f (x, x2- 2) = 
1 

=:(x) 

2-x2 
For each fixed y, 0 < y < 1, f(x, y) has a global maximum at 

1 1 1 if y 2. 
2 

Hence 

Sf(1,y) 
= y if y > 

(A.2) f(xy) f( -1,y) = + 
if 

=: (y). 

Combining (A.1) and (A.2) we have (a). It is clear that O(x) and 0'(y) are increasing 
functions with values in the interval (1, 1]. 

(b) is immediate from (a): Note that f(x, y) is continuous at (1, 1) and f(1, 1) = 
1; as f(x, y) -+1, 

f(x, y) min 
2 y <1 

implies that x -+ 1 and y --- 1. O 
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